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A new hybrid Laplace transform/"nite element method is proposed to solve the
dynamic problem of a bimodal ultrasonic motor, which used a piezoelectric beam
to drive the rotor. Two modes, longitudinal and #exural, of the piezoelectric beam
are simultaneously excited by only one power ampli"er. A set of di!erential
equations is derived by "nite element formulation for this oscillating beam. A proper
similarity transform technique is used to decouple the Laplace transformed
equations governing the vibration of the beam without contact and to make the
inverse Laplace transformation easier. The contact problem between the beam and
the rotor is also formulated and numerically solved. It is found that the simulation
results obtained by using this hybrid method are almost identical with those by the
Runge}Kutta method, but the former is able to avoid an excessive amount of
computation time. Some important factors a!ecting the behavior of this motor are
studied, including structure design, amplitude of input voltage, phase displacement,
exciting frequency, gap between beam tip and rotor, and contact phenomena.
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1. INTRODUCTION

In previous studies, the hybrid Laplace transform/"nite di!erence method [1, 2]
and the Laplace transform/"nite element method [3, 4] were proposed to solve
mainly for linear transient heat-conduction problems. A new hybrid Laplace
transform/"nite element method was applied to solve two- and three-dimensional
linear transient heat conduction problems [5, 6]. For non-linear problems, the
non-linear terms in the governing equations were linearized by Taylor's series
expansion [7] in order to apply this method. Recently, the quasi-static and dynamic
response of a linear viscoelastic beam has been solved numerically by using the
hybrid Laplace transform/"nite element method [8]. The main di$culty in applying
the hybrid method is to solve a set of linear equations with complex-number
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626 R.-F. FUNG E¹ A¸.
coe$cients formed by the Laplace transform and then to take the inverse Laplace
transform. The numerical inversion form of the Laplace transform can be written as
trigonometric integrals by using the Durbin method [9]. In order to avoid the
numerically induced oscillations in the solutions, the inverse Laplace transform
method of Honing and Hirdes [10] was proposed, where 60 or 100 terms of Fourier
series expansion must be taken. Therefore it takes excessive computer time.

Fleischer et al. [11}13] developed a new motor, in which a bi-directional
piezoelectric ultrasonic motor is operated with only a single input voltage and thus
only one power ampli"er is needed. This driving voltage excites simultaneously the
longitudinal and #exural oscillation modes of a beam resonator. This type of
ultrasonic motor is called the bimodal motor. The dynamic characteristic of this
motor is studied in this paper.

The con"guration of the bimodal motor is shown in Figure 1. The piezoelectric
beam in this model is composed of a steel beam, three PZT pieces and an aluminum
beam. The mathematical model is derived based on the general formulations of
constitutive laws in piezoelectric materials [14, 15] and isotropic materials, and the
"nite element method is applied to discretize the space domain. After deriving the
geometry constraint at the contact point and applying the Lagrange multiplier
method, the governing di!erential-algebraic equations for the contact behavior
between the stator beam and the rotor are formulated and solved numerically. The
new hybrid Laplace transform/"nite element method [5, 6] is employed to solve the
equations governing the vibrations of a bimodal ultrasonic motor without contact.
A proper similarity transform technique is used to decoupled the Laplace
transformed equations and to make the inverse transform easier. The method can
save a considerable amount of computation time compared with other methods,
such as the Runge}Kutta method, in which the numerical accuracy is greatly
dependent on integration time step. Some important design factors are studied
which include structure design, amplitude of input voltage, phase displacement,
exciting frequency, gap between stator and rotor and contact phenomena.

2. FORMULATIONS OF PHYSICAL MODEL

2.1. FINITE ELEMENT FORMULATION OF STATOR BEAM

The model of the bimodal ultrasonic motor consists of a piezoelectric stator and
a rotor as shown in Figure 1. The stator beam is divided into four regions with total
length l

t
. Region 1 of the beam is made of steel with length l

s
. Region 2 is the

piezoceramics with length l
l
, used for the longitudinal oscillation. Two pieces of

piezoceramics partitioned up and down form region 3 with length l
f

and are used
for #exural oscillation by placing piezoceramics in the opposite polarization
direction. Region 4 of the beam is made of aluminum with length l

a
which may

contact with the rotor. The global co-ordinate system OX> is located at the "xed
root of the stator. The beam is modelled as a Timoshenko beam and the
Lagrangian equations are used to derive the equations of motion of the system.

The kinetic energy of the stator beam for each region can be expressed as
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Figure 1. Schematic diagram of the bimodal piezomotor driven with a longitudinal mode and
a #exural mode. Big arrows indicate directions of polarization of the piezoceramics.
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where R
t
is the velocity of any point on the beam at the position R, o

i
is the mass

density and <
i
is the volume for the region i of the beam.

The potential energy for regions 2 and 3 of the piezoceramics can be expressed as

;
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where cE
ijkl

is the elastic coe$cient at a constant electric "eld, e
ijk

is the piezoelectric
coe$cient and es

ik
is the dielectric coe$cient at a constant elastic stress, S

ij
is the

small strain component, E
k

is the electric "eld and <
p

denotes the volume of
piezoceramics. The potential energy for regions 1 and 4 of the steel and aluminum is
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where <
S

is the volume for steel and aluminum parts.
The components of the linear Lagrangian strain for the Timoshenko beam

modal are

S
11

"u
x
!yt

x
, S

22
"0, S

12
"S

21
"1

2
(v

x
!t), (4)

where u and v represent the axial and transverse displacements of the stator beam,
respectively, t is the rotating angle of the cross-section and the electric "eld in the
piezoceramics part of the beam is

E
1
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x
, (5)

where / is the electric potential.
The virtual works in the mechanical and electrical domains are, respectively,
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where F*
F
"!Pi#Qj is the external force applied at x"l

t
. The forces P and Q are

the axial compressive force and transverse force, respectively. Ml
(
N is the vector of

surface direction cosines and MD
i
N is electric displacement.

By applying the "nite element method, the stator is decomposed into many
Timoshenko beam elements. The nodal degrees of freedom of a beam element are
composed of the axial displacement u, transverse displacement v and angle t. For
the piezoceramics beam element, each node has an additional degree of freedom of
electric potential /. The displacement v and slope t of the beam element can be
described by using the cubic polynomial functions and the de#ection u and electric
potential / by using the linear polynomial functions.

Following the standard formulation of the "nite element method for equations
(1)}(3), one obtains the kinetic energy and potential energy for each beam element
as
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where [m], [k
uu

], [k
u(

], [k
(u

] and [k
((

] are element matrices for each region of the
stator beam element. A detailed formulation of the above equations can be found in
reference [16].

Hamilton's principle without constraint is
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where N
e
is the total number of elements of the piezoelectric beam and ¸

i
"¹

i
!;

i
is Lagrangian function of each element.

By substituting equations (8}10) into equation (11), performing calculus of
variation, assembling all of the element equations and applying the boundary
conditions u

l
"v

l
"t

l
"0 at the "xed end, a set of global ordinary di!erential

equations of the system can be obtained:
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where Q
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,NT is the nodal displacement vector,

Q
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m2`m3`1
NT is the electric potential vector, where m

2
and m

3
are the

element numbers in regions 2 and 3, respectively, M
uu

is the mass matrix, K
uu

, K
u(

and K
((

are mechanical, piezoelectric and dielectric sti!ness matrices, respectively.
F
F

is the mechanical force vector and F
Q

is the electrical charge vector.

2.2. CONDENSATION OF SYSTEM EQUATIONS

In the bimodal motor design, one of the goals is to have a beam resonator such
that one of its bending natural frequency is two times its axial natural frequency



Figure 2. Block diagram of electrical driving circuit.
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[13]. This bimodal motor is driven by an applied voltage shown in Figure 2. As an
applied voltage excites the stator beam across two electrodes on the left and right
surfaces of the piezoceramics, these two equal potential surfaces have di!erent
electrical potentials. Therefore, the electrical boundary conditions of the electrical
potential on the grounded electrode is set to zero. Moreover, for the ungrounded
electrodes which have an electrical potential /, the F

Qp
is the nodal charge on the

ungrounded electrode surface. The electrical potential vector of the system can be
set as [17]
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where Q
(i

is the electrical potential vector corresponding to the internal nodes and
Q
(p

is the electrical potential vector corresponding to the nodes on the ungrounded
electrode surface. Then equation (12) can be partitioned correspondingly as
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The "rst two sets of equation (14) can be rewritten as
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If Q
(p

is speci"ed as the input for the resonator, the second set of equation (15) can
be used to relate Q

(i
in terms of Q

(p
. Then the "rst set of equation (15) can be

rewritten as
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where
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and F
(

can be de"ned as the electrical force vector produced by the speci"ed
voltage vector at the piezoceramics. The last set of equation (14) can be used to
calculate the charge distribution on the ungrounded electrode surfaces as long as
equation (16) is solved.

Since the mechanical loss due to the viscoelasticity of the materials is an
important factor for dynamic behavior of a vibration system, some damping e!ect
has to be included in the model given in equation (16). The following form is
introduced for simplifying the analysis

MQG #CQ0 #KQ"F, (19)

where M"M
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and K"K@
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are the assembled system matrices, Q"Q
u

is the
system nodal displacement vector and F"F

F
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(
is the external force. The

damping matrix C added to the stator beam model in equation (16) is
C"aM

uu
#bK@

uu
, where a and b are constants to be given.

2.3. NEW HYBRID LAPLACE TRANSFORM/FINITE ELEMENT METHOD

The governing equation (19) is a standard form of linear equation, which can be
solved numerically by various numerical integration schemes. Here the new hybrid
Laplace transform method [5, 6], instead of the Runge}Kutta method, is applied to
increase the simulation e$ciency.

One takes the Laplace transform with respect to equation (19) and obtains

(s2M#sC#K)Q1 "f1 , (20)

where f1"(sM#C)Q(0)#MQ0 (0)#(1/s)F, s is a complex number, and Q1 is
a (n]1) vector representing the unknown displacement functions of the Laplace
transform.

Since M is positive de"nite, all of its eigenvalues are positive. One can de"ne the
following transform matrix:
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where e
i
is the ith eigenvector of M corresponding to its ith eigenvalue k

i
, and then

the following transformed relation is obtained:

RTMR"I, (22)

where I is the unit matrix. It is assumed that the eigenvalues are distinct.
Sequentially, by using the following transformation,

Q1 "RQ1 (1), (23)
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and pre-multiplying R, equation (20) becomes

(s2I#s(aI#bG )#G)Q1 (1)"f1 (1), (24)

where G"RTKR and f1 (1)"RTf1 .
Now, G can be easily proved to be a symmetric matrix, and then it can be further

reduced to a diagonal form. Setting

Q1 (1)"PQ1 (2), (25)

where P is formed from the eigenvectors of G and P~tP"I, substituting equation
(25) into equation (24) and pre-multiplying equation (24) by P~1 yield

(s2I#s(aI#b ) diag [i
i
])#diag [i

i
])Q1 (2)"P~1f1 (1)"f1 (2), (26)

where i
i

is the ith eigenvalue of matrix G. Therefore, the following decoupled
equations are obtained:
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The inverse Laplace transform of qN (2)
i

(s) can then be obtained by the partial fraction
method. The merit of this proposed transformation is to deduce the decoupled form
and the inverse Laplace transform solution can be obtained easily. Finally, the
displacement Q1 can be obtained by

Q1 "RPQ1 (2). (28)

3. CONTACT OF STATOR WITH ROTOR

3.1. GEOMETRIC CONSTRAINT

When the beam tip comes into contact with the rotor, the position of the beam
tip must satisfy the geometric constraint formed by its contact situation. Figure 3
shows the geometric relation between the beam tip position and the rotor. The
position vector of the tip point B@ after deformation is
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The following relationship from the summation of vectors is valid:
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Using equations (29) and (30), we get the expression for vector R
B{D

. Since the
magnitude of R

B{D
is the radius of the rotor, the geometric constraint condition,

when the beam tip touches the rotor, can be written as

C
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where d is the gap from the undeformed beam tip to the rotor surface and r is the
radius of the rotor. This algebraic equation must be satis"ed during contact, which
governs the motion of the tip point of the stator beam. Equation (31) implies that



Figure 3. The initial and current state of the stator beam contacting with the rotor.
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the longitudinal and transverse de#ections at the beam tip are non-linearly coupled
when the stator beam is in contact with the rotor. Furthermore, the friction force
generated during contact is modeled by the coulomb friction law.

The Lagrange multiplier method is applied to treat the constrained dynamic
problem, whereas the geometric condition is enforced by augmenting the Lagrange
multiplier as an additional system variable. Following this approach, the external
contact force vector F

F
is calculated by means of two force terms. The "rst one is

the generalized normal reaction force, which is calculated by the product of the
scalar Lagrange multiplier with the gradient of the constraint, jBT, where
B"[0,2, LC

B
/Lu

Ne`1
, LC

B
/Lv

Ne`1
, 0]. The second one is the generalized friction

force Dj DQT
f
, where Dj D can be replaced by j sign j, Q

f
"kM0,2, LC

B
/Lv

Ne`1
,

!LC
B
/Lu

Ne`1
, 0N, and k is the dynamic friction coe$cient. Then the constrained

dynamic equations can be rewritten from equation (19) as the following one:
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The positive rotation direction of the rotor is de"ned in the counterclockwise
direction, while the positive direction of friction force F

t
is de"ned as the one which

makes the rotor rotate counterclockwise. This de"nition allows us to write the
equation of the revolution of the rotor in the form:

JhG#C
d
hQ "rF

i
!M

p
(33)

where J is the moment of inertia of the rotor, C
d
is the viscous damping constant

and M
p

is the prescribed torque. The normal contact force F
n

can be determined
from jBT, while the friction force F

t
can be determined from jQT

f
sign j.

3.2. NUMERICAL SCHEME FOR CONSTRAINED MOTION

To solve the constrained dynamic system of the mixed di!erential-algebraic
equations formed by equations (31) and (32), the numerical technique proposed by
Hatman et al. [18] is used. The numerical algorithm for the entire problem can be
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found in reference [16]. The numerical scheme is summarized as follows: (1) If t
n~1
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Q
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and Q0
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are known, predict values Qp

u,n
and Q0 p
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at t

n
. (2) By using the

backward di!erence method (BDF) and the Newton}Raphson iterative method to
solve the corrected values, the generalized co-ordinates can be computed as
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where t
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is the constant time step. (3) Using a similar BDF method, the corrected

generalized velocities are computed by
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where j
n
is the value of the Lagrange multiplier at time t

n
, and can be calculated by

substituting equation (35) into equation (32), i.e.
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(4) Put Qp
u,n

"Q
u,n

and Q0 p
u,n

"Q0
u,n

and repeat (2) and (3) until the value j
n
does not

change. (5) Go to step 1 to simulate the next time step.

4. NUMERICAL RESULTS AND DISCUSSIONS

Transient responses of the piezoelectric beam without and with rotor are
analyzed by the new hybrid Laplace transform/"nite element method in this section
and the results are compared with those obtained by the Runge}Kutta method.
The material properties of the stator beam are listed in Table 1. The rotor is made
of steel, with a thickness of 2)5 mm and a radius r"20 mm, which is assumed to be
rigid. Due to the slender geometry of the beam structure, the axial and bending
sti!ness are quite small compared to that of the rotor. The assumption of the rigid
rotor should be a reasonable approximation.

The coe$cient of the dry friction k between the rotor and stator beam and the
shape factor K for the beam are taken to be 0)2 and 0)85 respectively. The input
voltage applied to the piezoceramics is

<
t
"<

l
sinA2n

f
2

tB#<f sin (2n ft#H), (37)

where f is the exciting frequency for the bending mode, H is the phase displacement
and the <

l
and <

f
are the voltage amplitudes. The two constants in the beam

damping model a"0)002 and b"1]10~7 are used, while the damping constant
of the rotor C

d
"0)0002 is chosen. The damping constants used in simulation

are only for proper demonstration. For actual application, these values can be
determined by usual methods from vibration theory and experimentation. The



TABLE 1

Material properties and dimensions of the piezoelectric stator

Steel Piezoceramics Aluminum

Young's Modulus E (Gpa) 220 63)0 70
Poisson's ratio l 0)3 0)3 0)33
Shear Modulus G (GPa) 84)6 24)2 26)3
Density o (kg/m3) 7800 7600 2710
Piezoelectric (C/m2)
e
111

0 16)0 0
e
112

0 36)8 0
Dielectric es

11
(nN/V2) 0 15)3 0

Length l (mm) l
s
"20 l

l
"7)5 l

f
"7)5 l

a
"45

Width b (mm) b
s
"24 b

l
"15 b

f
"15 b

a
"15

Depth h (mm) h
s
"24 h

l
"15 h

f
"7)5 h

a
"4 or 12

TABLE 2

Comparison between the natural frequencies (Hz) of the cantilever beam

Mode Only aluminum Stator beam Stator beam
h
a
"4 mm h

a
"4 mm h

a
"12 mm

v(I) 1621)73 1573)38 3018)62
v(II) 10163)23 9098)90 13096)00
v(III) 28457)34 17219)01 24338)12
v(IV) 55765)04 29556)44 36718)75
u (I) 28235)27 24032)38 19033)81

Note: v(I): "rst bending mode, v (II): second bending mode, v (III): third bending mode, v(IV): fourth
bending mode, u(I): "rst axial mode
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simulations are done on a personal computer with the Intel Pentium 166 MHz.
When the Runge}Kutta method in MATLAB is used, the desired accuracy 10~9 is
speci"ed and the integration time step is 1 ls for the Runge}Kutta method.
Without specially notifying the element number in the following simulations, an
eight-element model, two elements for each part of the beam, are used.

4.1. TRANSIENT RESPONSES WITHOUT ROTOR

In Table 2, the natural frequencies for di!erent stator beam designs are computed
by solving the eigenvalue problem formed by equation (16). To have a beam
resonator with its fourth bending natural frequency being two times its "rst axial
natural frequency, a simpli"ed design is used in which only the aluminum beam is
considered and the classical beam formulation of natural frequency is applied.
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Some calculated natural frequencies are shown in the "rst column of Table 2. Then
transient responses of the piezoelectric resonator are simulated with f"55765 Hz,
<
l
"200 V, <

f
"300 V, H"0 and the results are simulated with time step 1 ls for

this hybrid method. In Figures 4(a) and (b) the axial and bending de#ections at the
beam tip are shown respectively. In these two "gures beating phenomena and the
damping e!ect can be seen. Finally, the steady state response is obtained. The
trajectory of beam tip during the time range 3 ms)t)5 ms is shown in
Figure 4(c), and a distorted Lissajous "gure is formed. The external excitation
voltage is shown in Figure 4(d). This is because the input voltage with f /2 frequency
used to stimulate the axial vibration also excites certain amount of the bending
vibrations with this frequency, as shown in Figure 4(b). It can be seen obviously
from beam frequencies shown in Table 2 that the real natural frequencies in column
two of the stator beam are quite di!erent from the simple model in column one. The
Figure 4. The transient axial and transverse amplitudes of the stator beam for the forced vibration
with f"55765 Hz and h

a
"4 mm. (a) Axial de#ection u

a
, (b) transverse de#ection v

a
, (c) trajectory at

beam tip during 3 ms)t)5 ms, (d) the external excitation voltage, (e) the nodal axial de#ection u at
t"3 ms, (f ) the nodal transverse de#ection v at t"3 ms.



636 R.-F. FUNG E¹ A¸.
natural frequency of the fourth bending mode of the piezoelectric beam with
h
a
"4 mm is 29556 Hz which is close to the f /2. This is why certain bending

vibrations with f /2 frequency is stimulated. If the beam tip follows the sharp
geometry at the right end of the tip trajectory, as in Figure 4(c), and if the rotor is
put into its place to be driven by the beam tip, it will certainly yield bad
performance. Thus, a more accurate design is needed.

The numerical simulations in Figures 4(e) and (f ) show the nodal displacements
obtained by the new method,which are almost identical with those obtained by the
Runge-Kutta method. The computation time, for these results until t"3 ms, by
use of the new method (-.-.-.), is 965 s, which is about eight times faster than 8117 s
by the Runge}Kutta method (*). From this simple case, the hybrid method saves
a lot of computation time and shows its superior e!ectiveness over the
Runge}Kutta method.

A new height of the aluminum beam is designed based on the piezoelectric beam
model. Through several tries, new height of h

a
"12 mm is chosen and the new set of

natural frequencies can be found in the third column of Table 2. With this new
design the fourth bending frequency 36719 Hz is almost twice the "rst axial
frequency 19034 Hz. A new input voltage frequency f"36 000 Hz is applied to
stimulate this redesign. Figures 5(a)} (c) show the transient responses and similar
behavior as that in Figures 4(a)}(c). However, the tip trajectory shown in
Figure 5(c) with the same time period is much smoother than the "rst design.
Another simulation with input voltage frequency f"38 000 Hz, which is also close
to the fourth bending frequency 36719 Hz, is performed and the results are shown
Figure 5. The transient axial and transverse amplitudes of the stator beam for the forced vibration
with f"36000 Hz and h

a
"12 mm. (a) Axial de#ection u

a
, (b) transverse de#ection v

a
, (c) trajectory at

beam tip during 3 ms)t)5 ms.



Figure 6. The transient axial and transverse amplitudes of the stator beam vibration with
f"38000 Hz and h

a
"12 mm. (a) Axial de#ection u

a
, (b) transverse de#ection v

a
, (c) trajectory at

beam tip during 3 ms)t)5 ms.

Figure 7. The transient axial and transverse amplitudes of the stator beam vibration with
f"38000 Hz and h

a
"12 mm with di!erent input voltages <

l
(* 200 V,2, 300 V).
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in Figures 6(a)}6(c). In Figure 6(a) the beating phenomenon disappears and the
amplitude gradually increases. Smooth trajectory is also shown in Figure 6(c).

Figures 7 and 8 show the e!ect of di!erent voltage amplitude and phase of the
input voltage of equation (37) on the transient responses. It is observed in Figure 7



Figure 8. The transient axial and transverse amplitudes of the stator beam vibration with
f"38000 Hz and h

a
"12 mm. In (a)}(d), H (!0)1n,2,!0)1n), (a) trajectory at beam tip during

3 ms)t)5 ms, (b) axial de#ection u
a
, (c) transverse de#ection v

a
, (d) the external voltage. In (e)}(h),

H (!0)5n,2,!0)5n), (e) trajectory at beam tip during 3 ms)t)5 ms, (f ) axial de#ection u
a
,

(g) transverse de#ection v
a
, (h) the external voltage.
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that the axial amplitude is larger when the amplitude of axial voltage is increased.
Figure 8 shows Lissajous "gures for the di!erent phases of input voltage. The
results in Figures 4}8 show that di!erent trajectories can be adjusted by changing
the exciting frequency, amplitude and phase of the input voltage to yield better
performance.
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4.2. TRANSIENT RESPONSES WITH ROTOR

In order to study the dynamic performance of the bimodal motor, the contact
between the stator beam and the rotor must be considered. The mixed
di!erential}algebraic equations (31) and (32) are solved to obtain the transient
responses. Some numerical simulations are performed under the same driving
condition as used in Figure 6. Three di!erent gaps between the undeformed beam
tip and the rotor shown in Figure 3, i.e., d"3, 4 and 4.5 lm, are set and the
resulting performance is simulated and compared. Since the axial amplitude of the
steady state response shown in Figure 6(a) is about 5 lm, the rotor is placed at
a position such that the gap d must fall below this value in order to come into
contact with each other. As the axial de#ection in this case increases monotonously,
the beam tip is expected to touch the rotor. Figures 9(a)} (d) show the results for
d"3 mm. Figure 9(a) shows the transient responses of axial de#ection and the
constraint is satis"ed as predicted. The rotor velocity history driven by the contact
friction force is shown in Figure 9(b). Figure 9(c) shows the tip trajectory. From
Figure 9(c) it is seen that the "nal steady trajectory is very di!erent from the
Lissajous trajectory without contact, as shown in Figure 6(c). The induced contact
force is shown in Figure 9(d). The results of the initial gap of 4 and 4)5 lm are
shown in Figures 10 and 11 respectively. From the normal contact force histories
shown in Figures 9(d), 10(d) and 11(d), it reveals that not every oscillating period of
the beam comes into contact with the rotor. For this range of gap, more often the
contact and lower normal contact force occurs as the gap distance decreases. The
Figure 9. Transient responses with contacting rotor with f"38 000 Hz, h
a
"12 mm and

d"3 lm. (a) Axial de#ection u
a
, (b) rotor velocity hQ , (c) trajectory of beam tip, (d) normal contact

force.



Figure 10. Transient responses with contacting rotor with f"38 000 Hz, h
a
"12 mm and

d"4 lm. (a) Axial de#ection u
a
, (b) rotor velocity hQ , (c) trajectory of beam tip, (d) normal contact

force.

Figure 11. Transient responses of contacting rotor with f"38 000 Hz, h
a
"12 mm and

d"4.5 lm. (a) Axial de#ection u
a
, (b) rotor velocity hQ (c) trajectory of beam tip, (d) normal contact

force.
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Figure 12. Histories of rotor velocities at di!erent, d"3 lm (**), 4 lm (} } } ), 4)5 lm (- )- )-).
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rotating velocities of the rotor for these three cases are put together and compared
in Figure 12. It is obvious that d"3 lm is a better design and has a quicker
start-up and a better rotary acceleration.

5. CONCLUSION

In this paper the governing equations for the piezoelectric beam are
formulated by the "nite element method, which describe the dynamic behavior
of the stator beam when the electrode voltage is applied. Then the contact
condition is treated and a numerical scheme is applied to simulate the dynamic
contact behavior. During operation of the bimodal motor, contact and without
contact with the rotor for forced vibration of the piezoelectric beam will
alternately occur. Thus the rotor accelerates only when the beam tip touches the
rotor surface. The new hybrid Laplace transform/"nite element method is applied
to greatly increase the simulation speed for transient responses. Using the
transform method on the matrix with complex-number coe$cients, this hybrid
method can be used to handle problems with many nodes. As there is no restriction
on integration time step to ensure accuracy for this method, many fewer points are
needed to be computed between adjacent contact periods, hence saving much
computing time. Some of the results are also compared with those of the
Runge}Kutta method.

From the numerical simulations, some conclusions are drawn as follows:

(1) The new hybrid Laplace transform/"nite element method combined with
a similarity transform method can indeed speed up the computation time for
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the bimodal motor, in which the di!erential}algebraic equations govern the
contact behavior.

(2) The stator beam should be designed properly to have suitable natural
frequencies such that better tip trajectory can be formed. Proper turning the
amplitudes, phase angle and exciting frequencies of input voltage may yield
a better design.

(3) Interaction between stator beam and rotor due to contact may in#uence the
trajectory of the beam tip dramatically. Thus in order to design a bimodal
motor having better performance, the simulation of contact behavior should be
conducted. The proposed method can be used to solve numerically this
dynamic behavior.

(4) The gap between the beam tip and rotor is also an important factor, which
should be carefully addressed to yield better performance.
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APPENDIX: NOMENCLATURE

A cross-sectional area of the beam
b width
C

d
viscous damping

D
i

electric displacement
E
k

electric "eld
e
ij

piezoelectric constant
F*

F
applied force

h depth
i, j unit vectors in the X and > directions respectively
I area moment of inertia about neutral axis
J moment of inertia of a rotor
K shape factor
l
p

length of piezoceramics
l
t

length of stator beam (total length)
l
e

length of an element
r radius of rotor
S
ij

strain "eld
¹
e

kinetic energy of an element
t time
t
h

constant time step
;
e

strain energy of an element
u, v longitudinal and transverse displacements respectively
< volume
<
t

input voltage
OX> global co-ordinate system
o mass density
j Lagrange multiplier
f exciting frequency
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h angle of rotor
H phase angle
e
ij

dielectric constant
t rotation angle of Timoshenko beam
/ electric potential
k coe$cient of dry friction
d gap between the undeformed beam and rotor
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